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ABSTRACT
This paper discusses the integration of solar energy into the power grid by forecasting solar power ahead of time using a time
series forecasting problem formulation. The aim is to help reduce the impact of fossil fuels on the environment. The two main
objectives are namely to forecast PV power one timestep ahead and to forecast PV power multiple timesteps ahead. Data has
been taken from the Hong Kong University of Science and Technology. This paper compares machine learning techniques such
as CNN LSTM, RNN LSTM, Dense Neural Network, Convolutional Neural Network, to find the best predictor of PV output. The
tuning of hyperparameters such as the learning rate, regularization parameter, activation function, number of iterations, etc.
is also an essential part of the discussion. The long short term memory (LSTM) and dense feed forward layers, as well as
convolutional layers help to introduce new important features from the original features. This paper gives a summary of the
future works to be done to assist for additional research and improved results.
KEYWORDS: Solar power forecasting, machine learning, renewable energy, neural networks, autoregression, power integration.

1 INTRODUCTION
Due to the emergence of rising global temperatures, and the
dire consequences of global warming, it is of utmost impor-
tance to work on reducing greenhouse gas emissions. The
largest source of these are fossil fuels, therefore it is important
to find alternative energy sources, such as renewable energy
sources to reduce the impact of global warming. Finding clean
energy and integrating it into the energy grid is a huge step to-
wards solving the UN Sustainable Development Goal Number
7, as shown in [Figure 1]. However, it has been challenging for
scientists and policy-makers to harness these renewable en-
ergy sources, especially solar energy, to the fullest extent due
to the unreliability of such energy sources. Therefore to aid
with the integration of renewable energy to the energy grid,
it is important to forecast the output of the energy sources.
Since solar energy is the most prominent source of renewable
energy, with long-lasting advantages, this paper focuses on
forecasting Photo-Voltaic (PV) output ahead of time, to make
it easier to integrate solar energy into the grid, and reduce the
reliance on fossil fuels.
PV cells convert light energy to electric energy using ma-
terials that show signs of photovoltaic effect. The main issue
is that solar panels, which make up a PV system only work
well if the sunlight is directly on to the panel, and energy is
lost when tracking system is not established, hence building
a PV forecasting system is of utmost importance. PV outputs
vary throughout the day, given the varying solar irradiation
and other weather temperatures, therefore, to integrate this
resource into the energy grid, whilst maintaining consumer
demands, forecasting of power output can help to estimate
the amount of load that solar power can assist with. During
times of high solar power production, batteries can be used to
store the excess energy for times when the sun is not out (i.e
during the night, or on a rainy day).
∗Q gargaarush2006@gmail.com

Figure 1: Sustainable Development Goal Number 7: Clean and
Affordable Energy

2 RELATED RESEARCH

Multiple techniques were used to predict solar power output
one hour ahead given hourly data. In [Akhter et al. 2022], tech-
niques such as artificial neural networks (ANN), convolutional
neural networks (CNN), multiple linear regression and sup-
port vector machines were used for prediction. In [Isaksson
and Karpe Conde 2018] and [Alam et al. 2021] mathematical
models such as ARIMA (auto regressive integrated moving av-
erage) as well as machine learning algorithms were used, due
to their ability to factor in seasonality of winter vs summer
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and the time of day. Other than the ones stated above, the
most common techniques include recurrent neural network
(RNN), dense neural network and the combination of RNN
and CNN with LSTM (long short term memory). From [Alam
et al. 2021], CNN LSTM worked best on the data provided,
with a mean absolute error of 5 percent. Other deep learning
techniques, such as Auto-LSTM and MLP (multiple layer per-
ceptron) have been used for forecasting solar PV output, as in
[Gensler et al. 2016].
For multiple timestep forecasting, techniques from [Pedre-
gal and Trapero 2021] as well as the similar techniques from
single timestep forecasting are very common. In particular,
the hybrid Convolutional LSTM model is the most common,
as the convolutional layer and LSTM layer work well together,
giving good approximations.
In the forecasting of PV output, the most common weather
features chosen are solar irradiance, temperature, humid-
ity,visibility, pressure dew and windspeed, as can be seen in
[Zheng et al. 2020]. In particular the solar irradiance feature
is of great importance, as shown in [Feng et al. 2022]. An-
other additional feature, as discussed in [Theocharides et al.
2020], which could be useful is the azimuth. This is because it
indicates the elevation angle of the Sun above the solar panel
system, and theoretically should contribute a weight to the PV
solar output.

3 OBJECTIVES
This paper discusses 2 main objectives:
1. To predict PV output one timestep ahead
2. To predict PV output multiple timesteps (14 hours) ahead
As discussed, these objectives are both of importance to help
with planning, and the integration of renewable energy in the
form of solar energy into the power grid.

4 DATA COLLECTION
There are many weather variables which may affect the so-
lar power production of a certain hour. Some of these factors
include solar irradiance, temperature, windspeed, humidity,
time of day and time of year. The data from the past 2 years
of hourly readings for these factors was collected from the
Hong Kong University of Science and Technology (HKUST)
Supersite, and PV data was collected from the HKUST So-
lar site. The site is located in the New Territories region of
Hong Kong, and collects data using various different types of
sensors including pressure sensors, temperature sensors and
anemometer to measure windspeed.

5 NOTATIONS
LSTM = Long Short Term Memory
CNN = Convolutional Neural Network
RNN = Recurrent Neural Network
ARIMA = Auto-Regressive Integrated Moving Average
PV = Photo-Voltaic
ANN = Artificial Neural Network
AR LSTM = Auto-Regressive Long Short Term Memory
α = learning rate
λ = regularization parameter

tanh = Hypberbolic Tangent Activation Function
relu = Rectified Linear Unit
Adam = Adaptive Moment Optimizer
Epochs = Number of Iterations
ConvWindow = Convolutional Window Width
MAE = Mean Absolute Error
val = cross-validation set
d = length of day in seconds
t = timestamp in seconds
x = data feature
𝑥 = normalized feature

6 LIST OF FEATURES USED IN MODELLING
• Windspeed

• Azimuth

• Solar Irradiance

• Pressure

• Visibility

• Humidity

• Temperature

• PV output

• Day sin

• Day cos

7 DATA PREPARATION
In this section, the preparation stages of the data will be out-
lined.

7.1 Removing Anomalous Data from Weather Set
Before merging the data from weather features, it was essen-
tial to remove the anomalous data from the dataset. For ex-
ample, the data for certain hours for temperature happened
to be -99999 degrees celsius. This indicated that an error had
occurred, and the sensor was unable to give a reading for that
hour, and such anomalous data was removed from the dataset.
After that, the data was merged into a dataframe as shown
below, with the outputs of 2 year of weather data, collected
hourly.

7.2 Feature Normalization
For techniques involving machine learning, it is essential to
do feature normalization, before running the model. This is
because certain features may have different data ranges, and
assigning weights to these features will be meaningless. In-
stead, if all features are normalized, then the weights can be
compared against each other, and thus the importance of each
feature can be compared. This is highly important for analysis
of models and methods to increase performance of the model,
as the data can be easily understood. [Figure 2] below shows
a snapshot of the first 10 rows of the normalized dataframe.

𝑥 =
(𝑥 − 𝑚𝑖𝑛(𝑥))

(𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)) (1)

Page 2



PV Forecasting Aarush Garg 2022

Figure 2: Dataset with PV and all weather features normalized

7.3 Data Transformation - Day sin, Day cos features
As discussed in [Elfeky et al. 2005], it is very important to detect
the periodicity and pattern of data, and hence creating features
to detect this is highly important. One key step required was to
create a feature which captures the time of day in a numerical
method, and gives a repeating pattern of values for each new
day. Hence, each date and time was give a timestamp and
then multiplied by 2π and divided by the duration of each
day. The cosine and sine of these values were taken, to form
a periodic curve for every 24 hours. A similar process could
be used to find the seasonality of the year, by replacing the
length of day with length of year.

𝐷𝑎𝑦𝑆𝑖𝑛 = 𝑠𝑖𝑛( 2π𝑡
𝑑

) (2)

𝐷𝑎𝑦𝐶𝑜𝑠 = 𝑐𝑜𝑠( 2π𝑡
𝑑

) (3)

7.4 Training Set - Test Set - Validation Set Split
In this data, the split of data has been done 75 percent training,
15 percent validation and 10 percent test data. It is essential
to ensure that the data is chosen in a time-series manner, such
that the training set data has to be together, as the data being
used is in chronological order (date and time wise). Hence, the
algorithm being run is a time-series forecasting model. Due
to the fact that this problem is a time-series formulation, the
machine learning algorithm would not give proper weights if
the order of the data were to be changed. Auto-regression of
the PV output would fail as the data would not be in a time-
series order, if the data were split randomly. The weather and
solar output of the previous timestep does impact the weather
and solar output of the next timestep, due to the physical con-
straints on how quickly the weather can change.

7.5 Cleaning the PV Output Data
Data for the PV output for each day was available for every 5
minutes between 5:00 am to 8:00 pm. This is because at any
time after 8:00pm and before 5:00 am, the sun was not out and
therefore the PV output data was not collected during these
times. Accurate data was collated into a dataframe, as shown
below.

7.6 Merging PV and Weather Data
Merging the PV and weather data was tricky as the PV data
had been collected every 5 minutes whereas the weather data
had been collected hourly. Therefore, when merging the PV

and weather data, the largest common subset of both sets of
times had to be chosen along with the label data (PV output)
and the input features (weather data). In [Figure 3] shown
below, a sample of the dataframe can be seen with all the PV
and Weather data together.

Figure 3: Clean dataframe with PV Output and Weather Fea-
tures

7.7 Violin Plot

After the normalization of data, a violin plot was created to
show the distribution of data for each feature, and evaluate
the split of data for the entire dataset. [Figure 4] was used
to check for large anomalies in the data, and if so, to under-
stand the cause behind this anomalous data, and whether any
modification would be required.

Figure 4: Violin Plot of Different Features

8 METHODOLOGY

8.1 Single-Step Model

The single step model involves taking inputs of a certain win-
dow length, and producing a single output from these inputs.
This is then compared against the actual output/label, and the
MAE is found, which is fed back to the model. The figure be-
low [Figure 5] gives a visual representation of the single-step
forecasting model.
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Figure 5: Single Step Forecasting Model

8.2 Multi-Step Model

The multi output model involves taking inputs of a certain
window length, and producing a multiple timestep ahead out-
put from these inputs. These outputs are compared against
the actual outputs, and the MAE is found, which is fed back
to the model. The figure below [Figure 6] gives a visual rep-
resentation of multi-step forecasting model.

Figure 6: Multi-Step Forecasting Model

8.3 Performance Metric

The metric being used is the Mean Absolute Error (MAE), as it
is the most appropriate metric, after the parameters have been
normalized. Since the features are normalized from 0-1, MAE
depicts the Mean Absolute Percentage Error in the prediction,

and is easily interpretable for evaluating performance every
time a hyperparameter has been changed.

9 DIFFERENT TECHNIQUES USED
There are many different techniques that can be used for this
time series forecasting problem.

9.1 Linear
This technique is a simple multiple linear regression, with the
algorithm assigning weights to all weather parameters and
predicting the PV output of the next timestep. This technique
involves auto-regression of weather parameters and PV out-
put, so that weights can be given to the weather parameters for
the next timestep for the multiple timesteps ahead forecasting
objective.

9.2 CNN
This technique involved the usage of 1 convolutional layer and
2 hidden dense layers with 64 units, as well as 1 output layer.
The convolutional layer contained 32 filters and a 7x7 kernel,
connected to a dense neural network with 2 hidden layers of
64 units each. The window size used was 7 timesteps, as this
was the most suitable window size, as discussed in the section
discussing hyperparameters. The convolutional layer is used
to help split each of the data features to help the dense neural
network easily predict each part and then give weights to the
original inputs of the convolutional layer. The figure below
[Figure 7] shows an example of convolutional window.

Figure 7: Convolution Window - CNN Model

9.3 Multi-Step Dense
This technique was similar to the single step dense neural
network, as it involved 2 dense layers consisting of 64 units
each and one output layer, however the window-size was 3
timesteps. This meant that the previous 3 timesteps were be-
ing used to predict the next timestep for the single step output.
This technique is used to check how important autoregression
of weather parameters is to the model. With three timesteps
of given input data, it gives the algorithm better knowledge of

Page 4



PV Forecasting Aarush Garg 2022

the dependence of the next timestep on the previous timestep
(i.e autoregression).

9.4 CNN LSTM
This technique involved the usage of 1 convolutional layer, 1
LSTM layer, 1 dense layer and 1 output layer. The convolu-
tional layer contains 32 filters and a 7x7 kernel, with the tanh
activation function. The window size used was 7 timesteps,
as this was the most suitable window size, as discussed in the
section discussing hyperparameters. The LSTM layer con-
tains 32 filters as well, whilst the dense neural network con-
sisted of 1 hidden layer of 64 units. First the convolutional
layer was used to extract deeper features from the original
weather data, and then the LSTM layer, as seen in [Figure 8]
is used to help with finding long term time series features.
This gives the dense layer more features, which it was able
to use to good effect. Then, backward propagation occurred,
which helps to find the weights of the original inputs. With
multiple timesteps ahead forecasting, the CNN LSTM model
also has autoregression taking place, such that the results of
the first output, as well as the previous 6 given inputs are used
to predict the results of the next output.

Figure 8: LSTM Model with tanh activation function

9.5 RNN LSTM
This techniques involves the usage of one LSTM layer, to help
serve as a building block for the other layers. The LSTM
helps assign certain weights which helps the RNN let new in-
formation in, forget information or assign it importance to the
output. As in [Luo et al. 2021], this technique is used instead
of a normal recurrent neural network, due to the issue of van-
ishing gradients. The figure below [Figure 9] gives a visual
representation of the RNN model.

9.6 Dense Neural Network
This technique involved using 3 dense layers consisting of 64
units each, and one output layer. The window size for this
technique is only 1 timestep, implying that only the previous
timestep is used to predict the next timestep. This technique
is used as it is important to strike a comparison between the
other neural network techniques and the conventional neural
network.

9.7 AR LSTM
This technique involves using one LSTM layer, one RNN
layer, one dense layer and one output layer. This technique
helps with the autoregression of PV through time, and there-
fore this is used for the multiple time steps forecasting. This

Figure 9: RNN Model Recursion Loop

model has a clear advantage to others, as it can be adjusted
easily to give an output length of many timesteps ahead, and
due to the autoregression, it has a higher accuracy rate. How-
ever, the downside is that this model can only be run well on
multiple timesteps forecasting as it as an autoregressive model.
For the prediction of one timestep ahead forecasting, it would
give no different results to the usual dense network.

9.8 Baseline

The baseline model is used as a metric of comparison, as it
shows the error of assuming that the next output is equal to
the last PV output. If the baseline error is lower than the error
of the other model, it is an indication that either the data is
heavily skewed, or the model has been formulated incorrectly.
In a multi-step model, an additional baseline technique is
used, which repeats the pattern of the last n given inputs for
the next n outputs, where n is the number of timesteps fore-
casted.

10 HYPERPARAMETERS
In this section, the paper discusses the different hyperparam-
eters which need to be tuned and the values they have.

10.1 Regularization Parameter (λ) and Number of Epochs

The number of epochs or iterations the model had to run on
the training set is another important hyperparameter. This
was highly important to get the optimal weights for the model
to ensure that neither underfitting nor overfitting was taking
place. In addition to this, another hyperparameter which was
used to prevent overfitting was the regularization parameter;
λ. This added weight penalized overfitting, but it had to be
tuned in order for it not to be too low which would have
caused overfitting, but also for it not to be too high, which
would have caused underfitting. After testing 4 times, the op-
timal value for λ turned out to be 1e-2 for the CNN LSTM
model and 1e-1 for all the other machine learning models.
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10.2 Convolution Window
Another very important hyperparameter for the convolutional
neural network was the window width. This would help de-
termine how many previous timesteps would be used to pre-
dict the next time step for the various different models. For
example, the convolutional window width, used for the CNN
and CNN LSTMwas 7 timesteps, as it gave results with lower
MAE than any of the window sizes greater or smaller than 7.

10.3 Learning Rate(α)
Another hyperparameter which required tuning was the
learning rate α. It is necessary to alter the learning rate to an
optimum to ensure that neither overshooting nor slow gradi-
ent descent was taking place. After 5 iterations of the program,
it could be seen that the optimal solution for the learning rate
was 8e-4.

10.4 Activation Function
The activation function was another very important hyperpa-
rameter to tune. The method used to find the optimal activa-
tion function was to take the average of three runs for each
of the three activation functions: tanh, relu and sigmoid and
compare the mean absolute percentage error for each of the
functions. From the results of each of three runs, it could
clearly be seen that the optimal function was the tanh activa-
tion function. This was a very important hyperparameter, as
this caused a significant increase in the model performance.

10.5 Optimizer - Adam
The optimizer being used is the Adam (Adaptive Moment) op-
timizer, as it is computationally faster than other optimizers,
and requires fewer parameters for tuning than other optimiz-
ers, as it tunes the parameters by itself.

11 RESULTS
11.1 Single Step Ahead Model
11.1.1 Linear Weights

Figure 10: Weights for Linear Regression Model

11.1.2 Linear

Figure 11: Predicted vs actual values for Linear Regression
model

11.1.3 CNN LSTM

Figure 12: Predicted vs actual values for CNN LSTM model

11.1.4 RNN LSTM

Figure 13: Predicted vs actual values for RNN LSTM model
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11.1.5 CNN

Figure 14: Predicted vs actual values for CNN model

11.1.6 Comparison

As can be seen from the figures below [Figure 15] and [Fig-
ure 16], the results for the CNN LSTM model are the best,
with an error of less than 8 percent for the training set and
validation set. Additionally, the RNN LSTM model is also
quite successful, giving very similar errors to the CNN LSTM
model. This implies that the LSTM layer is highly beneficial
in the prediction, and helps with getting the most important
features.

Figure 15: Comparison of MAE for training, test and validation
data for all techniques

11.1.7 Results Table

Figure 16: Different techniques - MAE for single time step fore-
casting

11.1.8 Discussion of Results

For the single time step ahead forecasting, the results can be
seen in [Figure 15] and [Figure 16]. As expected the CNN
LSTM model had the best results with a 6 percent error. This
is due to the convolutional layer and the LSTM layer, which
help to adapt the given features into different features. Given
such a vast amount of features, the dense network was able
to assign weights to the original features via backward propa-
gation. The RNN LSTM model also performed quite well, as
the LSTM layer was able to help with giving the RNN layer
certain weights to help the model remember or forget features
depending on their importance. Additionally, the problem of
vanishing gradients was not present, hence the model was
able to backward propagate to give all the weights.

11.2 Multi Step Ahead Forecasting

In this model, the errors were found to be much higher than
in the single step ahead forecasting, and the baseline algo-
rithm gave significantly higher errors, of around 0.38 or 0.39
in comparison to the other techniques which gave errors of
close to 0.11 or 0.12. This is because, the autoregression is
more useful in multiple step ahead forecasting, whereas it is
not as useful in the single step ahead forecasting. Therefore,
the AR LSTM model has done the best on this data, whereas
the other models have not done as well.
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11.2.1 Linear Weights

Figure 17: Weights for Multiple Step Ahead Linear Model

11.2.2 AR LSTM

Figure 18: Predicted vs Actual Values for AR LSTM Model

11.2.3 RNN LSTM

Figure 19: Predicted vs Actual Values for RNN LSTM Model

11.2.4 CNN

Figure 20: Predicted vs Actual Values for CNN Model

11.2.5 Dense

Figure 21: Predicted vs Actual Values for Dense Model

11.2.6 Linear

Figure 22: Predicted vs Actual Values for Linear Model
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11.2.7 Comparison

As can be seen from the figures below [Figure 23] and [Fig-
ure 24]. the results for the AR LSTM model are the best, with
an error of close to 11 percent for each of the training, test
and validation set. The baseline models have a very high er-
ror, as they are unable to perform auto-regression, and the
data changes drastically for multiple hours ahead forecasting
and hence the models that do autoregression have a marked
improvement. The RNN LSTM model was also very suc-
cessful, due to the fact that it used the LSTM layer as well,
which helped to reduce the unimportant features, but include
more important features. For the RNN in particular, it also got
rid of the vanishing gradient problem, hence this gave results
of close to 12 percent error. The errors of the multiple step
forecasting, however, are very significantly higher than that
of the single step ahead forecasting, due to the fact that the
errors increase incrementally for each timestep the model is
forecasting.

Figure 23: Comparison of MAE for different techniques in train-
ing, test and validation set

11.2.8 Results Table

Figure 24: Different techniques - MAE for multiple time step
forecasting

12 CONCLUSION AND SCOPE FOR FUTURE WORK
From the results above, it can be concluded that the best tech-
nique for solar PV forecasting of one timestep ahead is the
CNN LSTMmethod, and best technique for solar PV forecast-
ing of multiple timesteps ahead is the AR LSTM method. For
both techniques, the common layer in the model is the LSTM
layer, which helps to remove unimportant features and gives
important features higher weights. For the single timestep
ahead forecasting, the convolutional layer helps to split the
original features into multiple different features, which is fed
into the LSTM layer, to find the most important features. For
the multiple timestep ahead forecasting, the autoregression of
the AR LSTM model helps to better predict the weather data
for multiple timesteps ahead, and this in turn makes it easier
to predict the solar PV output data.
To give the model a better sense of seasonality, the dataset
for training, test and validation set could be split differently.
Instead of choosing the first 75 percent to be training data,
the first 75 percent of data for each month could instead be
chosen to be training data, the next 15 percent of each month
to be validation data and the last 10 percent of each month
to be test data. In this manner, the algorithm would be able
to distinguish between months and give the seasonality for
different months, which would make the model better.
Another method which could be used for future improve-
ments is shown in [Wang et al. 2017]. This method involves
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the clustering of days of data into certain categories, and then
performing pairwise predictions on this data using k-nearest
neighbors and neural networks. This is useful if weather does
not change drastically throughout a day, as it classifies that a
day as sunny or rainy and then calculates the PV output given
this classification.
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